參考答案
1.B 2.C 3.B 4.A 5.C
6.∠B=90°或∠BAC+∠BCA=90°
7.證明:∵四邊形ABCD是矩形,
∴AB=CD,AD∥BC,∠B=90°.
∵DF⊥AE,∴∠AFD=∠B=90°.
∵AD∥BC,∴∠DAE=∠AEB.
又∵AD=AE,∴△ADF≌△EAB.
∴DF=AB.∴DF=DC.
8.證明:由平移變換的性質(zhì),得
CF=AD=10 cm,DF=AC,
∵∠B=90°,AB=6 cm,BC=8 cm,
∴AC2=AB2+CB2,即AC=10 cm.
∴AC=DF=AD=CF=10 cm.
∴四邊形ACFD是菱形.
9.(1)證明:∵點(diǎn)O為AB的中點(diǎn),OE=OD,
∴四邊形AEBD是平行四邊形.
∵AB=AC,AD是△ABC的角平分線,
∴AD⊥BC.即∠ADB=90°.
∴四邊形AEBD是矩形.
(2)解:當(dāng)△ABC是等腰直角三角形時(shí),
矩形AEBD是正方形.
∵△ABC是等腰直角三角形,
∴∠BAD=∠CAD=∠DBA=45°.∴BD=AD.
由(1)知四邊形AEBD是矩形,
∴四邊形AEBD是正方形.