亚洲欧洲国产欧美一区精品,激情五月亚洲色五月,最新精品国偷自产在线婷婷,欧美婷婷丁香五月天社区

      單獨報考
      當前位置:中華考試網 >> 高考 >> 四川高考 >> 四川高考數學模擬題 >> 2015屆四川高考數學沖刺專題練習15

      2015屆四川高考數學沖刺專題練習15

      中華考試網  2015-05-05  【

        題型一 雙曲線的漸近線問題

        例1 (2013·課標全國Ⅰ)已知雙曲線C:-=1(a>0,b>0)的離心率為,則C的漸近線方程為________.

        破題切入點 根據雙曲線的離心率求出a和b的比例關系,進而求出漸近線.

        答案 y=±x

        解析 由e==知,a=2k,c=k,k∈(0,+∞),

        由b2=c2-a2=k2,知b=k.所以=.

        即漸近線方程為y=±x.

        題型二 雙曲線的離心率問題

        例2 已知O為坐標原點,雙曲線-=1(a>0,b>0)的右焦點為F,以OF為直徑作圓與雙曲線的漸近線交于異于原點的兩點A,B,若(+)·=0,則雙曲線的離心率e為________.

        破題切入點 數形結合,畫出合適圖形,找出a,b間的關系.

        答案

        解析 如圖,設OF的中點為T,由(+)·=0可知AT⊥OF,

        又A在以OF為直徑的圓上,∴A,

        又A在直線y=x上,∴a=b,∴e=.

        題型三 雙曲線的漸近線與離心率綜合問題

        例3 已知A(1,2),B(-1,2),動點P滿足⊥.若雙曲線-=1(a>0,b>0)的漸近線與動點P的軌跡沒有公共點,則雙曲線離心率的取值范圍是________.

        破題切入點 先由直接法確定點P的軌跡(為一個圓),再由漸近線與該軌跡無公共點得到不等關系,進一步列出關于離心率e的不等式進行求解.

        答案 (1,2)

        解析 設P(x,y),由題設條件,

        得動點P的軌跡為(x-1)(x+1)+(y-2)·(y-2)=0,

        即x2+(y-2)2=1,它是以(0,2)為圓心,1為半徑的圓.

        又雙曲線-=1(a>0,b>0)的漸近線方程為y=±x,即bx±ay=0,

        由題意,可得>1,即>1,

        所以e=<2,

        又e>1,故11的條件,常用到數形結合.

        (2)在求雙曲線的漸近線方程時要掌握其簡易求法.由y=±x±=0-=0,所以可以把標準方程-=1(a>0,b>0)中的“1”用“0”替換即可得出漸近線方程.雙曲線的離心率是描述雙曲線“張口”大小的一個數據,由于==,當e逐漸增大時,的值就逐漸增大,雙曲線的“張口”就逐漸增大.

        1.已知雙曲線-=1(a>0,b>0)以及雙曲線-=1的漸近線將第一象限三等分,則雙曲線-=1的離心率為________.

        答案 2或

        解析 由題意,可知雙曲線-=1的漸近線的傾斜角為30°或60°,則=或.

        則e===

        = =或2.

        2.已知雙曲線C:-=1 (a>0,b>0)的左,右焦點分別為F1,F2,過F2作雙曲線C的一條漸近線的垂線,垂足為H,若F2H的中點M在雙曲線C上,則雙曲線C的離心率為________.

        答案

        解析 取雙曲線的漸近線y=x,則過F2與漸近線垂直的直線方程為y=-(x-c),可解得點H的坐標為,則F2H的中點M的坐標為,代入雙曲線方程-=1可得-=1,整理得c2=2a2,即可得e==.

        3.已知雙曲線-=1(a>0,b>0)的兩條漸近線均和圓C:x2+y2-6x+5=0相切,且雙曲線的右焦點為圓C的圓心,則該雙曲線的方程為________.

        答案 -=1

        解析 ∵雙曲線-=1的漸近線方程為y=±x,

        圓C的標準方程為(x-3)2+y2=4,

        ∴圓心為C(3,0).

        又漸近線方程與圓C相切,

        即直線bx-ay=0與圓C相切,

        ∴=2,∴5b2=4a2.①

        又∵-=1的右焦點F2(,0)為圓心C(3,0),

        ∴a2+b2=9.②

        由①②得a2=5,b2=4.

        ∴雙曲線的標準方程為-=1.

        4.已知雙曲線-=1(a>0,b>0)的左,右焦點分別為F1(-c,0),F2(c,0),若雙曲線上存在點P使=,則該雙曲線的離心率的取值范圍是________.

        答案 (1,+1)

        解析 根據正弦定理得=,

        由=,

        可得=,即==e,

        所以PF1=ePF2.

        因為e>1,

        所以PF1>PF2,點P在雙曲線的右支上.

        又PF1-PF2=ePF2-PF2=PF2(e-1)=2a,

        解得PF2=.

        因為PF2>c-a(不等式兩邊不能取等號,否則題中的分式中的分母為0,無意義),

        所以>c-a,即>e-1,

        即(e-1)2<2,解得e<+1.

        又e>1,所以e∈(1,+1).

        5.(2014·湖北)已知F1,F2是橢圓和雙曲線的公共焦點,P是它們的一個公共點,且∠F1PF2=,則橢圓和雙曲線的離心率的倒數之和的最大值為________.

        答案

        解析 設PF1=r1,PF2=r2(r1>r2),

        F1F2=2c,橢圓長半軸長為a1,雙曲線實半軸長為a2,橢圓、雙曲線的離心率分別為e1,e2,

        由(2c)2=r+r-2r1r2cos ,

        得4c2=r+r-r1r2.

        由得

        所以+==.

        令m===

        =,

        當=時,mmax=,

        所以()max=,

        即+的最大值為.

        6.(2014·山東改編)已知a>b>0,橢圓C1的方程為+=1,雙曲線C2的方程為-=1,C1與C2的離心率之積為,則C2的漸近線方程為________.

        答案 x±y=0

        解析 由題意知e1=,e2=,

        ∴e1·e2=·==.

        又∵a2=b2+c,c=a2+b2,

        ∴c=a2-b2,

        ∴==1-()4,

        即1-()4=,

        解得=±,∴=.

        令-=0,解得bx±ay=0,

        ∴x±y=0.

      12
      糾錯評論責編:xiejinyan
      相關推薦
      熱點推薦»