7.若橢圓+=1(a>b>0)與雙曲線-=1的離心率分別為e1,e2,則e1e2的取值范圍為_(kāi)_______.
答案 (0,1)
解析 可知e==1-,
e==1+,
所以e+e=2>2e1e100,b>0)的左焦點(diǎn)F作圓x2+y2=的切線,切點(diǎn)為E,延長(zhǎng)FE交雙曲線的右支于點(diǎn)P,若E為PF的中點(diǎn),則雙曲線的離心率為_(kāi)_______.
答案
解析 設(shè)雙曲線的右焦點(diǎn)為F′,由于E為PF的中點(diǎn),坐標(biāo)原點(diǎn)O為FF′的中點(diǎn),所以EO∥PF′,又EO⊥PF,所以PF′⊥PF,且PF′=2×=a,故PF=3a,根據(jù)勾股定理得FF′=a.所以雙曲線的離心率為=.
9.(2014·浙江)設(shè)直線x-3y+m=0(m≠0)與雙曲線-=1(a>0,b>0)的兩條漸近線分別交于點(diǎn)A,B.若點(diǎn)P(m,0)滿足PA=PB,則該雙曲線的離心率是________.
答案
解析 雙曲線-=1的漸近線方程為y=±x.
由得A(,),
由得B(,),
所以AB的中點(diǎn)C坐標(biāo)為(,).
設(shè)直線l:x-3y+m=0(m≠0),
因?yàn)镻A=PB,所以PC⊥l,
所以kPC=-3,化簡(jiǎn)得a2=4b2.
在雙曲線中,c2=a2+b2=5b2,
所以e==.
10.(2013·湖南)設(shè)F1,F(xiàn)2是雙曲線C:-=1(a>0,b>0)的兩個(gè)焦點(diǎn),P是C上一點(diǎn),若PF1+PF2=6a,且△PF1F2的最小內(nèi)角為30°,則雙曲線C的離心率為_(kāi)_______.
答案
解析 不妨設(shè)PF1>PF2,
則PF1-PF2=2a,
又∵PF1+PF2=6a,
∴PF1=4a,PF2=2a.
又在△PF1F2中,∠PF1F2=30°,
由正弦定理得,∠PF2F1=90°,∴F1F2=2a,
∴雙曲線C的離心率e==.
11.P(x0,y0)(x0≠±a)是雙曲線E:-=1(a>0,b>0)上一點(diǎn),M,N分別是雙曲線E的左,右頂點(diǎn),直線PM,PN的斜率之積為.
(1)求雙曲線的離心率;
(2)過(guò)雙曲線E的右焦點(diǎn)且斜率為1的直線交雙曲線于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),C為雙曲線上一點(diǎn),滿足=λ+,求λ的值.
解 (1)點(diǎn)P(x0,y0)(x0≠±a)在雙曲線-=1上,
有-=1.
由題意有·=,
可得a2=5b2,c2=a2+b2=6b2,
則e==.
(2)聯(lián)立得4x2-10cx+35b2=0.
設(shè)A(x1,y1),B(x2,y2).
則①
設(shè)=(x3,y3),=λ+,
即
又C為雙曲線上一點(diǎn),即x-5y=5b2,
有(λx1+x2)2-5(λy1+y2)2=5b2.
化簡(jiǎn)得λ2(x-5y)+(x-5y)+2λ(x1x2-5y1y2)=5b2.
又A(x1,y1),B(x2,y2)在雙曲線上,
所以x-5y=5b2,x-5y=5b2.
由(1)可知c2=6b2,
由①式又有x1x2-5y1y2=x1x2-5(x1-c)(x2-c)=-4x1x2+5c(x1+x2)-5c2=10b2.
得λ2+4λ=0,解得λ=0或λ=-4.
12.(2014·江西)如圖,已知雙曲線C:-y2=1(a>0)的右焦點(diǎn)為F.點(diǎn)A,B分別在C的兩條漸近線上,AF⊥x軸,AB⊥OB,BF∥OA(O為坐標(biāo)原點(diǎn)).
(1)求雙曲線C的方程;
(2)過(guò)C上一點(diǎn)P(x0,y0)(y0≠0)的直線l:-y0y=1與直線AF相交于點(diǎn)M,與直線x=相交于點(diǎn)N.證明:當(dāng)點(diǎn)P在C上移動(dòng)時(shí),恒為定值,并求此定值.
解 (1)設(shè)F(c,0),
直線OB方程為y=-x,
直線BF的方程為y=(x-c),解得B(,-).
又直線OA的方程為y=x,
則A(c,),kAB==.
又因?yàn)锳B⊥OB,所以·(-)=-1,
解得a2=3,
故雙曲線C的方程為-y2=1.
(2)由(1)知a=,則直線l的方程為
-y0y=1(y0≠0),即y=.
因?yàn)閏==2,所以直線AF的方程為x=2,
所以直線l與AF的交點(diǎn)為M(2,);
直線l與直線x=的交點(diǎn)為N(,).
則==
=·.
因?yàn)镻(x0,y0)是C上一點(diǎn),則-y=1,
代入上式得=·
=·=,
即==為定值.