二、填空題
7.在等差數(shù)列{an}中,a2=5,a1+a4=12,則an=________;設(shè)bn=(nN*),則數(shù)列{bn}的前n項(xiàng)和Sn=________.
答案:2n+1 命題立意:本題考查等差數(shù)列的通項(xiàng)公式與裂項(xiàng)相消法,難度中等.
解題思路:設(shè)等差數(shù)列{an}的公差為d,則有a2+a3=5+a3=12,a3=7,d=a3-a2=2,an=a2+(n-2)d=2n+1,bn==,因此數(shù)列{bn}的前n項(xiàng)和Sn=×
==.
8.設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,若(nN*)是非零常數(shù),則稱該數(shù)列為“和等比數(shù)列”,若數(shù)列{cn}是首項(xiàng)為2,公差為d(d≠0)的等差數(shù)列,且數(shù)列{cn}是“和等比數(shù)列”,則d=________.
答案:4 解題思路:由題意可知,數(shù)列{cn}的前n項(xiàng)和為Sn=,前2n項(xiàng)和為S2n=,所以==2+=2+,所以當(dāng)d=4時(shí),=4.
9.已知定義在R上的函數(shù)f(x)是奇函數(shù)且滿足f=f(x),f(-2)=-3,數(shù)列{an}滿足a1=-1,且Sn=2an+n(其中Sn為{an}的前n項(xiàng)和),則f(a5)+f(a6)=______.
答案:3 解題思路:因?yàn)镾n=2an+n,則Sn-1=2an-1+n-1,
兩式相減得an=2an-1-1,通過(guò)拼湊整理得an-1=2(an-1-1),所以{an-1}是等比數(shù)列,則an-1=-2n,因此an=1-2n,所以a5=-31,a6=-63.
由f=f(x)且函數(shù)f(x)是奇函數(shù),用-x代替x得到f=f(-x)=-f(x),用+x代替x得到f(3+x)=f(x),所以函數(shù)f(x)為周期為3,
則f(a5)+f(a6)=f(-31)+f(-63)=f(-1)+f(0)=f(2)+0=-f(-2)=3.
10.已知ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a,b,c成遞減的等差數(shù)列.若A=2C,則的值為_(kāi)_______.
答案: 命題立意:本題主要考查等差數(shù)列、正弦定理、余弦定理與三角函數(shù)基本公式.解題思路是依據(jù)題意得出a,b,c之間的關(guān)系,再結(jié)合正弦定理、余弦定理及A=2C,從而得出a,c之間的關(guān)系.
解題思路:依題意知b=,===2cos C=2×,即====,所以a2=c,即(2a-3c)(a-c)=0,又由a>c,因此有2a=3c,故=.
三、解答題
11.已知函數(shù)f(x)=x2+bx為偶函數(shù),數(shù)列{an}滿足an+1=2f(an-1)+1,且a1=3,an>1.
(1)設(shè)bn=log2(an-1),求證:數(shù)列{bn+1}為等比數(shù)列;
(2)設(shè)cn=nbn,求數(shù)列{cn}的前n項(xiàng)和Sn.
命題立意:本題主要考查函數(shù)的性質(zhì),數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式等知識(shí).解題時(shí),首先根據(jù)二次函數(shù)的奇偶性求出b值,確定數(shù)列通項(xiàng)的遞推關(guān)系式,然后由等比數(shù)列的定義證明數(shù)列{bn+1}為等比數(shù)列,這樣就求出數(shù)列{bn}的通項(xiàng)公式,進(jìn)一步就會(huì)求出數(shù)列{cn}的通項(xiàng)公式,從而確定數(shù)列{cn}的前n項(xiàng)和Sn的計(jì)算方法.
解析:(1)證明: 函數(shù)f(x)=x2+bx為偶函數(shù),
b=0, f(x)=x2,
an+1=2f(an-1)+1=2(an-1)2+1,
an+1-1=2(an-1)2.
又a1=3,an>1,bn=log2(an-1),
b1=log2(a1-1)=1,
====2,
數(shù)列{bn+1}是首項(xiàng)為2,公比為2的等比數(shù)列.
(2)由(1),得bn+1=2n, bn=2n-1,
cn=nbn=n2n-n.
設(shè)An=1×2+2×22+3×23+…+n×2n,
則2An=1×22+2×23+3×24+…+n×2n+1,
-An=2+22+23+…+2n-n×2n+1
=-n×2n+1=2n+1-n×2n+1-2,
An=(n-1)2n+1+2.
設(shè)Bn=1+2+3+4+…+n,則Bn=,
Sn=An-Bn=(n-1)2n+1+2-.12.函數(shù)f(x)對(duì)任意xR都有f(x)+f(1-x)=1.
(1)求f的值;
(2)數(shù)列{an}滿足:an=f(0)+f+f+…+f+f(1),求an;
(3)令bn=,Tn=b+b+…+b,Sn=8-,試比較Tn與Sn的大小.
解析:(1)令x=,
則有f+f=f+f=1.
f=.
(2)令x=,得f+f=1,
即f+f=1.
an=f(0)+f+f+…+f+f(1),
an=f(1)+f+f+…+f+f(0).
兩式相加,得
2an=[f(0)+f(1)]++…+[f(1)+f(0)]=n+1,
an=,nN*.
(3)bn==,
當(dāng)n=1時(shí),Tn=Sn;
當(dāng)n≥2時(shí),
Tn=b+b+…+b
=4
<4
=4
=4=8-=Sn.
綜上,Tn≤Sn.