.過(guò)兩點(diǎn)A(0,4),B(4,6),且圓心在直線x-2y-2=0上的圓的標(biāo)準(zhǔn)方程是________.
解析 設(shè)圓心坐標(biāo)為(a,b),圓半徑為r,則圓方程為(x-a)2+(y-b)2=r2,
圓心在直線x-2y-2=0上,a-2b-2=0,
又圓過(guò)兩點(diǎn)A(0,4),B(4,6),(0-a)2+(4-b)2=r2,且(4-a)2+(6-b)2=r2,
由得:a=4,b=1,r=5,
圓的方程為(x-4)2+(y-1)2=25.
(x-4)2+(y-1)2=25.已知圓C:(x-3)2+(y-4)2=1,點(diǎn)A(0,-1),B(0,1).P是圓C上的動(dòng)點(diǎn),當(dāng)|PA|2+|PB|2取最大值時(shí),點(diǎn)P的坐標(biāo)是________.解析 設(shè)P(x0,y0),則|PA|2+|PB|2=x+(y0+1)2+x+(y0-1)2=2(x+y)+2,
顯然x+y的最大值為(5+1)2,
dmax=74,此時(shí)=-6,結(jié)合點(diǎn)P在圓上,解得點(diǎn)P的坐標(biāo)為.
9.已知平面區(qū)域恰好被面積最小的圓C:(x-a)2+(y-b)2=r2及其內(nèi)部所覆蓋,則圓C的方程為_(kāi)_______.
解析 由題意知,此平面區(qū)域表示的是以O(shè)(0,0),P(4,0),Q(0,2)所構(gòu)成的三角形及其內(nèi)部,所以覆蓋它的且面積最小的圓是其外接圓,又OPQ為直角三角形,故其圓心為斜邊PQ的中點(diǎn)(2,1),半徑為=,圓C的方程為(x-2)2+(y-1)2=5.
答案 (x-2)2+(y-1)2=5
.已知圓C:(x-3)2+(y-4)2=1,點(diǎn)A(-1,0),B(1,0),點(diǎn)P是圓上的動(dòng)點(diǎn),則d=|PA|2+|PB|2的最大值為_(kāi)_______,最小值為_(kāi)_______.
解析 設(shè)點(diǎn)P(x0,y0),則d=(x0+1)2+y+(x0-1)2+y=2(x+y)+2,欲求d的最值,只需求u=x+y的最值,即求圓C上的點(diǎn)到原點(diǎn)的距離平方的最值.圓C上的點(diǎn)到原點(diǎn)的距離的最大值為6,最小值為4,故d的最大值為74,最小值為34.
答案 74 34