函數(shù)的奇偶性
題組一
函數(shù)的奇偶性的判定
1.已知y=f(x)是定義在R上的奇函數(shù),則下列函數(shù)中為奇函數(shù)的是 ( )
①y=f(|x|);②y=f(-x);③y=xf(x);④y=f(x)+x.
A.①③ B.②③
C.①④ D.②④
解析:由奇函數(shù)的定義驗(yàn)證可知②④正確,選D.
答案:D
2.已知二次函數(shù)f(x)=x2-ax+4,若f(x+1)是偶函數(shù),則實(shí)數(shù)a的值為( )
A.-1 B.1 C.-2 D.2
解析:∵f(x)=x2-ax+4,
∴f(x+1)=(x+1)2-a(x+1)+4
=x2+2x+1-ax-a+4
=x2+(2-a)x+5-a,
f(1-x)=(1-x)2-a(1-x)+4
=x2-2x+1-a+ax+4
=x2+(a-2)x+5-a.
∵f(x+1)是偶函數(shù),
∴f(x+1)=f(-x+1),
∴a-2=2-a,即a=2.
答案:D
3.若函數(shù)f(x)=x2+(a∈R),則下列結(jié)論正確的是 ( )
A.?a∈R,f(x) 在(0,+∞)上是增函數(shù)
B.?a∈R,f(x)在(0,+∞)上是減函數(shù)
C.?a∈R,f(x)是偶函數(shù)
D.?a∈R,f(x)是奇函數(shù)
解析:當(dāng)a=16時(shí),f(x)=x2+,f′(x)=2x-,
令f′(x)>0得x>2.
∴f(x)在(2,+∞)上是增函數(shù),故A、B錯(cuò).
當(dāng)a=0時(shí),f(x)=x2是偶函數(shù),故C正確.
D顯然錯(cuò)誤,故選C.
答案:C
題組二
函數(shù)奇偶性的應(yīng)用
4.已知函數(shù)f (x)=ax4+bcosx-x,且f (-3)=7,則f (3)的值為 ( )
A.1 B.-7 C.4 D.-10
解析:設(shè)g(x)=ax4+bcosx,則g(x)=g(-x).由f (-3)=g(-3)+3,得g(-3)=f(-3)-3=4,所以g(3)=g(-3)=4,所以f (3)=g(3)-3=4-3=1.
答案:A
5.已知f(x)在R上是奇函數(shù),且滿足f(x+4)=f(x),當(dāng)x∈(0,2)時(shí),f(x)=2x2,則f(7)=( )
A.-2 B.2 C.-98 D.98
解析:由f(x+4)=f(x),得f(7)=f(3)=f(-1),
又f(x)為奇函數(shù),∴f(-1)=-f(1),
f(1)=2×12=2,∴f(7)=-2.故選A.
答案:A
6.設(shè)函數(shù)f(x)(x∈R)為奇函數(shù),f(1)=,f(x+2)=f(x)+f(2),則f(5)= ( )
A.0 B.1 C. D.5
解析:由f(1)=,
對f(x+2)=f(x)+f(2),
令x=-1,
得f(1)=f(-1)+f(2).
又∵f(x) 為奇函數(shù),∴f(-1)=-f(1).
于是f(2)=2f(1)=1;
令x=1,得f(3)=f(1)+f(2)=,
于是f(5)=f(3)+f(2)=.
答案:C