三、四邊形
分類(lèi)表:
1.一般性質(zhì)(角)
⑴內(nèi)角和:360°
、祈槾芜B結(jié)各邊中點(diǎn)得平行四邊形。
推論1:順次連結(jié)對(duì)角線(xiàn)相等的四邊形各邊中點(diǎn)得菱形。
推論2:順次連結(jié)對(duì)角線(xiàn)互相垂直的四邊形各邊中點(diǎn)得矩形。
、峭饨呛停360°
2.特殊四邊形
⑴研究它們的一般方法:
、破叫兴倪呅巍⒕匦、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定
、桥卸ú襟E:四邊形→平行四邊形→矩形→正方形
┗→菱形——↑
、葘(duì)角線(xiàn)的紐帶作用:
3.對(duì)稱(chēng)圖形
、泡S對(duì)稱(chēng)(定義及性質(zhì));⑵中心對(duì)稱(chēng)(定義及性質(zhì))
4.有關(guān)定理:①平行線(xiàn)等分線(xiàn)段定理及其推論1、2
、谌切、梯形的中位線(xiàn)定理
③平行線(xiàn)間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線(xiàn):①常連結(jié)四邊形的對(duì)角線(xiàn);②梯形中!捌揭埔谎、“平移對(duì)角線(xiàn)”、“作高”、“連結(jié)頂點(diǎn)和對(duì)腰中點(diǎn)并延長(zhǎng)與底邊相交”轉(zhuǎn)化為三角形。
6.作圖:任意等分線(xiàn)段。