∵二次函數(shù)圖象與直線y=x+3僅有一個交點,
∴一元二次方程根的判別式等于0,
即Δ=02+16(p-3)=0,解得p=3.
∴y=-14x2+x+3=-14(x-2)2+4.
當(dāng)x=2時,二次函數(shù)有最大值,最大值為4.
15.解:(1)設(shè)此拋物線的解析式為y=a(x-3)2+4,
此拋物線過點A(0,-5),
∴-5=a(0-3)2+4,∴a=-1.
∴拋物線的解析式為y=-(x-3)2+4,
即y=-x2+6x-5.
(2)拋物線的對稱軸與⊙C相離.
證明:令y=0,即-x2+6x-5=0,得x=1或x=5,
∴B(1,0),C(5,0).
設(shè)切點為E,連接CE,
由題意,得,Rt△ABO∽Rt△BCE.
∴ABBC=OBCE,即12+524=1CE,
解得CE=426.
∵以點C為圓心的圓與直線BD相切,⊙C的半徑為r=d=426.
又點C到拋物線對稱軸的距離為5-3=2,而2>426.
則此時拋物線的對稱軸與⊙C相離.
(3)假設(shè)存在滿足條件的點P(xp,yp),
∵A(0,-5),C(5,0),
∴AC2=50,
AP2=(xp-0)2+(yp+5)2=x2p+y2p+10yp+25,CP2=(xp-5)2+(yp-0)2=x2p+y2p-10xp+25.
、佼(dāng)∠A=90°時,在Rt△CAP中,
由勾股定理,得AC2+AP2=CP2,
∴50+x2p+y2p+10yp+25=x2p+y2p-10xp+25,
整理,得xp+yp+5=0.
∵點P(xp,yp)在拋物線y=-x2+6x-5上,
∴yp=-x2p+6xp-5.
∴xp+(-x2p+6xp-5)+5=0,
解得xp=7或xp=0,∴yp=-12或yp=-5.
∴點P為(7,-12)或(0,-5)(舍去).
、诋(dāng)∠C=90°時,在Rt△ACP中,
由勾股定理,得AC2+CP2=AP2,
∴50+x2p+y2p-10xp+25=x2p+y2p+10yp+25,
整理,得xp+yp-5=0.
∵點P(xp,yp)在拋物線y=-x2+6x-5上,
∴yp=-x2p+6xp-5,
∴xp+(-x2p+6xp-5)-5=0,
解得xp=2或xp=5,∴yp=3或yp=0.
∴點P為(2,3)或(5,0)(舍去)
綜上所述,滿足條件的點P的坐標(biāo)為(7,-12)或(2,3).