∴△ABM≌△DCM(SAS).
(2)解:四邊形MENF是菱形.證明如下:
E,F(xiàn),N分別是BM,CM,CB的中點,
∴NE∥MF,NE=MF.
∴四邊形MENF是平行四邊形.
由(1),得BM=CM,∴ME=MF.
∴四邊形MENF是菱形.
(3)2∶1 解析:當AD∶AB=2∶1時,四邊形MENF是正方形.理由:
∵M為AD中點,∴AD=2AM.
∵AD∶AB=2∶1,∴AM=AB.
∵∠A=90,∴∠ABM=∠AMB=45°.
同理∠DMC=45°,∴∠EMF=180°-45°-45°=90°.
∵四邊形MENF是菱形,∴菱形MENF是正方形.
14.解:(1)在△DFC中,∠DFC=90°,∠C=30°,DC=4t,
∴DF=2t,又∵AE=2t,∴AE=DF.
(2)能.理由如下:
∵AB⊥BC,DF⊥BC,∴AE∥DF.
又∵AE=DF,∴四邊形AEFD為平行四邊形.
當AE=AD時,四邊形AEFD是菱形,即60-4t=2t.
解得t=10 s,
∴當t=10 s時,四邊形AEFD為菱形.
(3)①當∠DEF=90°時,由(2)知EF∥AD,
∴∠ADE=∠DEF=90°.
∵∠A=60°,∴AD=AE•cos60°=t.
又AD=60-4t,即60-4t=t,解得t=12 s.
、诋敗螮DF=90°時,四邊形EBFD為矩形.
在Rt△AED中,∠A=60°,則∠ADE=30°.
∴AD=2AE,即60-4t=4t,解得t=152 s.
③若∠EFD=90°,則E與B重合,D與A重合,此種情況不存在.
綜上所述,當t=152 s或t=12 s時,△DEF為直角三角形.