丹東市2015中考數(shù)學考試說明
根據(jù)教育部《全日制義務教育數(shù)學課程標準(2011版)》(以下簡稱《數(shù)學課程標準》的要求,結(jié)合我市初中數(shù)學學科教學的實際情況,制定本考試說明。(我市數(shù)學學科使用教材版本為《北師版》)。
一、命題原則
1.命題以《數(shù)學課程標準》規(guī)定的內(nèi)容和程度要求為依據(jù)。
2、命題有利于改進學生的學習和教師的教學,從而達到有效地促進學生和教師的發(fā)展的目的,同時有利于課程改革的有效實施和深入發(fā)展。
3、命題注重對學生學習數(shù)學知識與技能的結(jié)果和過程的考查,注重對第三學段內(nèi)容所反映出來的數(shù)學思想和數(shù)學方法的考查,注重對學生的數(shù)學思考能力和解決數(shù)學問題能力的考查,加強試題與社會實際和學生生活實際的聯(lián)系。
4、命題面向全體學生,科學地評價學生通過課改階段的數(shù)學學習所獲得的知識和能力。
二、考試范圍
考查內(nèi)容以《數(shù)學課程標準》中的“內(nèi)容標準”為依據(jù),包括第三學段的全部內(nèi)容。其中“課題學習”不作為獨立命題內(nèi)容。
三、考試內(nèi)容及要求
數(shù)與代數(shù)
試題將考查學生學習實數(shù)、整式和分式、方程和方程組、不等式和不等式組、函數(shù)等知識,探索數(shù)、形及實際問題中蘊涵的關(guān)系和規(guī)律,初步掌握一些有效地表示、處理和交流數(shù)量關(guān)系以及變化規(guī)律的工具,發(fā)展符號感,體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系,增強應用意識,提高運用代數(shù)知識與方法解決問題的能力.
試題應注重讓學生在實際背景中理解基本的數(shù)量關(guān)系和變化規(guī)律,注重使學生經(jīng)歷從實際問題中建立數(shù)學模型、估計、求解、驗證解的正確性與合理性的過程,應加強考查方程、不等式、函數(shù)等內(nèi)容的聯(lián)系,應避免繁瑣的運算.
具體要求:
(一)數(shù)與式
1.有理數(shù)
(1)理解有理數(shù)的意義,能用數(shù)軸上的點表示有理數(shù),能比較有理數(shù)的大小.
(2)借助數(shù)軸理解相反數(shù)和絕對值的意義,掌握求有理數(shù)的相反數(shù)與絕對值的方法,知道 的含義(這里a表示有理數(shù)).
(3)理解乘方的意義,掌握有理數(shù)的加、減、乘、除、乘方及簡單的混合運算(以三步以內(nèi)為主)
(4)理解有理數(shù)的運算律,能運用運算律簡化運算.
(5)能運用有理數(shù)的運算解決簡單的問題.
2.實數(shù)
(1)了解平方根、算術(shù)平方根、立方根的概念,會用根號表示數(shù)的平方根、算數(shù)平方根、立方根
(2)了解乘方與開方互為逆運算,會用平方運算求百以內(nèi)整數(shù)的平方根,會用立方運算求百以內(nèi)整數(shù)(對應的負整數(shù))的立方根。
(3)了解無理數(shù)和實數(shù)的概念,知道實數(shù)與數(shù)軸上的點一一對應,能求實數(shù)的相反數(shù)與絕對值
(4)能用有理數(shù)估計一個無理數(shù)的大致范圍.
(5)了解近似數(shù),在解決實際問題中,并會按問題的要求對結(jié)果取近似值.
(6)了解二次根式、最簡二次根式的概念,了解二次根式(根號下僅限于數(shù))加、減、乘、除運算法則,會用它們進行有關(guān)的簡單四則運算.
3.代數(shù)式
(1)借助現(xiàn)實情境了解代數(shù)式,進一步理解用字母表示數(shù)的意義.
(2)能分析簡單問題中的簡單數(shù)量關(guān)系,并用代數(shù)式表示.
(3)會求代數(shù)式的值;能根據(jù)特定的問題查閱資料,找到所需要的公式,并會代入具體的值進行計算.
4.整式與分式
(1)了解整數(shù)指數(shù)冪的意義和基本性質(zhì),會用科學記數(shù)法表示數(shù)。
(2)理解整式的概念,掌握合并同類項和去括號的法則,能進行簡單的整式加法和減法運算;能進行簡單的整式乘法運算(其中的多項式相乘僅指一次式之間以及一次式與二次式相乘).
(3)能推導乘法公式:(a+b)(a-b)=a2-b2;(a±b)2=a2±2ab+b2,了解公式的幾何背景,并能利用公式進行簡單計算.
(4)能用提公因式法、公式法(直接利用公式不超過二次)進行因式分解(指數(shù)是正整數(shù)).
(5)了解分式和最簡分式的概念,能利用分式的基本性質(zhì)進行約分和通分,能進行簡單的分式加、減、乘、除運算.
(二)方程與不等式
1.方程與方程組
(1)能根據(jù)具體問題中的數(shù)量關(guān)系列出方程,體會方程是刻畫現(xiàn)實世界數(shù)量關(guān)系的有效模型.
(2)經(jīng)歷估計方程解的過程.
(3)掌握等式的基本性質(zhì)
(4)能解一元一次方程、可化為一元一次方程的分式方程(方程中的分式不超過兩個).
(5)掌握代入消元法和加減消元法,能解二元一次方程組.
(6)理解配方法,能用配方法、公式法、因式分解法解數(shù)字系數(shù)的一元二次方程.
(7)會用一元二次方程根的判別式判別方程是否有實根和兩個實根是否相等.
(8).能根據(jù)具體問題的實際意義,檢驗方程的解是否合理.
2.不等式與不等式組
(1).結(jié)合具體問題,了解不等式的意義,探索不等式的基本性質(zhì).
(2).能解數(shù)字系數(shù)的一元一次不等式,并能在數(shù)軸上表示出解集。會用數(shù)軸確定由兩個一元一次不等式組成的不等式組的解集.
(3).能夠根據(jù)具體問題中的數(shù)量關(guān)系,列出一元一次不等式,解決簡單的問題.
(三)函數(shù)
1. 函數(shù)
(1)探索簡單實例中的數(shù)量關(guān)系和變化規(guī)律,了解常量、變量的意義.
(2)結(jié)合實例,了解函數(shù)的概念和三種表示方法,能舉出函數(shù)的實例.
(3)能結(jié)合圖象對簡單實際問題中的函數(shù)關(guān)系進行分析.
(4)能確定簡單實際問題中函數(shù)的自變量取值范圍,并會求出函數(shù)值.
(5)能用適當?shù)暮瘮?shù)表示法刻畫簡單實際問題中變量之間的關(guān)系.
(6)結(jié)合對函數(shù)關(guān)系的分析,能對變量的變化情況進行初步討論.
2. 一次函數(shù)
(1)結(jié)合具體情境體會一次函數(shù)的意義,根據(jù)已知條件確定一次函數(shù)表達式.
(2)會利用待定系數(shù)法確定一次函數(shù)的表達式
(3)能畫一次函數(shù)的圖象,根據(jù)一次函數(shù)的圖象和解析表達式y(tǒng)=kx+b(k≠0)探索并理解k>0和 k<0時,圖象的變化情況.
(4)理解正比例函數(shù).
(5)體會一次函數(shù)與二元一次方程的關(guān)系.
(6)能用一次函數(shù)解決簡單實際問題.
3. 反比例函數(shù)
(1)結(jié)合具體情境體會反比例函數(shù)的意義,能根據(jù)已知條件確定反比例函數(shù)表達式.
(2)能畫出反比例函數(shù)的圖象,根據(jù)圖象和表達式 探索并理解 時,圖象的變化情況.
(3)能用反比例函數(shù)解決簡單實際問題.
4. 二次函數(shù)
(1)通過對實際問題的分析,體會二次函數(shù)的意義.
(2)會用描點法畫出二次函數(shù)的圖象,通過圖象了解二次函數(shù)的性質(zhì).
(3)會用配方法將數(shù)字系數(shù)的二次函數(shù)的表達式化為 的形式,并能由此得到二次函數(shù)的頂點坐標,說出圖象的開口方向,畫出圖象的對稱軸,并能解決簡單的實際問題.
(4)會利用二次函數(shù)的圖象求一元二次方程的近似解.
圖形與幾何
應考查學生探索基本圖形(直線形、圓)的基本性質(zhì)及其相互關(guān)系、對空間圖形的認識和感受,平移、旋轉(zhuǎn)、對稱的基本性質(zhì),考查變換在現(xiàn)實生活中的廣泛應用,考查運用坐標系確定物體位置的方法,考查空間觀念.
推理與論證的考查應從以下幾個方面展開:在探索圖形性質(zhì)活動過程中,發(fā)展合情推理,有條理地思考與表達;在積累了一定的活動經(jīng)驗與掌握了一定的圖形性質(zhì)的基礎上,從幾個基本的事實出發(fā),證明一些有關(guān)三角形、四邊形的基本性質(zhì),發(fā)展證明的必要性,理解證明的基本過程,掌握用綜合法證明的格式.
考試中應注重學生所學內(nèi)容與現(xiàn)實生活的聯(lián)系,注重使學生經(jīng)歷觀察、操作、推理、想象等探索過程;應注重對證明本身的理解,而不追求證明的數(shù)量和技巧.證明的要求控制在《數(shù)學課程標準》所規(guī)定的范圍內(nèi).
具體要求
(一).點、線、面、角
1.通過實物和具體模型,了解從物體抽象出來的幾何體、平面、直線和點等。
2.會比較線段的長短,理解線段的和、差,以及線段中點的意義
3.掌握基本事實:兩點確定一條直線
4.掌握基本事實:兩點之間線段最短
5.理解兩點間距離的意義,能度量兩點間的距離
6.理解角的概念,能比較角的大小
7.認識度、分、秒,會對度、分、秒進行簡單的換算,并會計算角的和、差
(二).相交線與平行線
1.理解對頂角、余角、補角等概念,探索并掌握對頂角相等、同角(等角)的余角相等、同角(等角)的補角相等的性質(zhì)。
2.理解垂線、垂線段等概念,能用三角尺或量角器過一點已知直線的垂線。
3.理解點到直線距離的意義,能度量點到直線的距離
4.掌握基本事實:過一點有且只有一條直線垂與已知直線垂直
5.識別同位角、內(nèi)錯角、同旁內(nèi)角
6.理解平行線的概念,掌握基本事實:兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行
7.掌握基本事實:過直線外一點有且只有一條直線與這條直線平行
8.掌握平行線的性質(zhì)定理:兩條平行直線被第三條直線所截,同位角相等。
9.能用三角尺和直尺過已知直線外一點畫這條直線的平行線。
10.探索并證明平行線的判定定理:兩條直線被第三條直線所截,如果內(nèi)錯角相等(或同旁內(nèi)角互補),那么這兩條直線平行;探索并證明平行線的性質(zhì)定理:兩條平行直線被第三條直線所截,內(nèi)錯角相等(或同旁內(nèi)角互補)。
11.了解平行于同一條直線的兩條直線平行。
(三).三角形
1、理解三角形及其內(nèi)角、外角、中線、高線、角平分線等概念,了解三角形的穩(wěn)定性。
2、探索并證明三角形的內(nèi)角和定理。掌握它的推論:三角形的外角等于與它不相鄰的兩個內(nèi)角的和。證明三角形的任意兩邊之和大于第三邊。
3、理解全等三角形的概念,能識別全等三角形中的對應邊、對應角。
4、掌握基本事實:兩邊及其夾角分別相等的兩個三角形全等
5、掌握基本事實:兩角及其夾邊分別相等的兩個三角形全等
6、掌握基本事實:三邊分別相等的兩個三角形全等
7、證明定理:兩角分別相等且其中一組等角的對邊也相等的兩個三角形全等
8、探索并證明角平分線的性質(zhì)定理:角平分線上的點到角兩邊的距離相等;反之,角的內(nèi)部到角兩邊距離相等的點在角的平分線上。
9、理解線段垂直平分線的概念,探索并證明線段垂直平分線的性質(zhì)定理:線段垂直平分線上的點到線段兩端的距離相等;反之,到線段兩端的距離相等的點在線段垂直平分線上。
10、了解等腰三角形的有關(guān)概念,探索并證明等腰三角形的性質(zhì)定理:等腰三角形的兩底角相等;底邊上的高線、中線及頂角平分線重合。探索并掌握等腰三角形的判定定理:有兩個角相等的三角形是等腰三角形。探索等邊三角形的性質(zhì)定理:等邊三角形的各角都等于60°,及等邊三角形的判定定理:三個角都相等的三角形(或有一個角是60°的等腰三角形)是等邊三角形。
11、了解直角三角形的概念,探索并掌握直角三角形的性質(zhì)定理:直角三角形的兩個銳角互余,直角三角形斜邊上的中線等于斜邊的一半。掌握有兩個角互余的三角形是直角三角形。
12、探索勾股定理及其逆定理,并能運用它們解決一些簡單的實際問題。
13、探索并掌握判定直角三角形全等的“斜邊、直角邊”定理
14、了解三角形重心的概念。
(四).四邊形
1.了解多邊形的定義,多邊形的頂點、邊、內(nèi)角、外角、對角線等概念;探索并掌握多邊形內(nèi)角和與外角和公式。
2.理解平行四邊形、矩形、菱形、正方形的概念,以及它們之間的關(guān)系;了解四邊形的不穩(wěn)定性。
3.探索并掌握平行四邊形的性質(zhì)定理 :平行四邊形的對邊相等、對角相等、對角線互相平分;探索并證明平行四邊形的判定定理 :一組對邊平行且相等的四邊形是平行四邊形;兩組對邊分別相等的四邊形是平行四邊形;對角線互相平分的四邊形是平行四邊形。
4.了解兩條平行線之間距離的意義,能度量兩條平行線之間的距離。
5.探索并證明矩形、菱形、正方形的性質(zhì)定理:矩形的四個角都是直角,對角線相等;菱形的四條邊相等,對角線互相垂直;以及它們的判定定理:三個角是直角的四邊形是矩形,對角線相等的平行四邊形是矩形;四邊相等的四邊形是菱形,對角線互相垂直的平行四邊形是菱形。正方形具有矩形和菱形一切性質(zhì)。
6.探索并證明三角形的中位線定理
(五). 圓
1.理解圓、弧、弦、圓心角、圓周角的概念,了解等圓、等弧的概念,探索并了解點與圓的位置關(guān)系。
2.探索圓周角與圓心角及其所對弧的關(guān)系,了解并證明圓周角定理及其推論:圓周角的度數(shù)等于它所對弧上的圓心角度數(shù)的一半;直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑;圓內(nèi)接四邊形的對角互補。
3.知道三角形的內(nèi)心和外心
4.了解直線和圓的位置關(guān)系,掌握切線的概念,探索切線與過切點的半徑的關(guān)系,會用三角尺過圓上一點畫圓的切線。
5.會計算圓的弧長、扇形的面積。
6.了解正多邊形的概念及正多邊形與圓的關(guān)系。
(六).尺規(guī)作圖
1.能用尺規(guī)完成以下基本作圖:作一條線段等于已知線段;作一個角等于已知角;作一個角的平分線;作一條線段的垂直平分線;過一點作已知直線的垂線。
2.會利用基本作圖作三角形:已知三邊、兩邊及其夾角、兩角及其夾邊作三角形;已知底邊及底邊上的高作等腰三角形;已知一直角邊和斜邊作直角三角形。
3. 會利用基本作圖完成:過不在同一直線上的三點作圓;作三角形的外接圓、內(nèi)切圓;作圓的內(nèi)接正方形和正六邊形。
4.在尺規(guī)作圖中,了解作圖的道理,保留作圖的痕跡,不要求寫出作法.
(七).定義、命題、定理
1. 通過具體的實例,了解定義、命題、定理、推論的含義。
2. 結(jié)合具體實例,會區(qū)分命題的條件和結(jié)論,了解原命題及其逆命題的概念。會識別兩個互逆的命題,知道原命題成立其逆命題不一定成立.
3.知道證明的意義和證明的必要性,知道證明要合乎邏輯,知道證明的過程可以有不同的表達形式,會綜合法證明的格式。
4. 了解反例的作用,知道利用反例可以判斷一個命題是錯誤的.
5.通過實例體會反證法的含義。
(八). 圖形的軸對稱
1. 通過具體實例了解軸對稱的概念,探索它的基本性質(zhì):成軸對稱的兩個圖形中,對應點的連線被對稱軸垂直平分。
2.能畫出簡單平面圖形(點、線段、直線、三角形等)關(guān)于給定對稱軸的對稱圖形。
3.了解軸對稱圖形的概念;探索等腰三角形、矩形、菱形、正多邊形、圓的軸對稱性質(zhì).
(九).圖形的旋轉(zhuǎn)
1、通過具體實例認識平面圖形關(guān)于旋轉(zhuǎn)中心的旋轉(zhuǎn),探索它的基本性質(zhì):一個圖形和它經(jīng)過旋轉(zhuǎn)所得的圖形中,對應點到旋轉(zhuǎn)中心距離相等,兩組對應點分別與旋轉(zhuǎn)中心連線所成的角相等。
2、了解中心對稱、中心對稱圖形的概念,探索它的基本性質(zhì):成中心對稱的兩個圖形中,對應點的連線經(jīng)過對稱中心,且被對稱中心平分。
3、探索線段、平行四邊形、正多邊形、圓的中心對稱性質(zhì)。
(十)圖形的平移
1、通過具體實例認識平移,探索它的基本性質(zhì),一個圖形和它經(jīng)過平移所得的圖形中,兩組對應點連線平行(或在同一條直線上)且相等。
2、運用圖形的軸對稱、旋轉(zhuǎn)、平移進行圖案設計。
(十一).圖形的相似
1、了解比例的基本性質(zhì),線段的比、成比例的線段,通過建筑、藝術(shù)上的實例了解黃金分割。
2、通過具體實例認識圖形的相似,了解相似多邊形和相似比
3、掌握基本事實:兩條直線被一組平行線所截,所得的對應線段成比例。
4、了解相似三角形的判定定理:兩角分別相等的兩個三角形相似;兩邊成比例且夾角相等的兩個三角形相似;三邊成比例的兩個三角形相似。※了解相似三角形判定定理的證明。
5、了解相似三角形的性質(zhì)定理:相似三角形對應線段的比等于相似比;面積的比等于相似比的平方。
6、了解圖形的位似,知道利用位似可以將一個圖形放大或縮小。
7、會利用圖形的相似解決一些簡單的實際問題。
8、利用相似的直角三角形,探索并認識銳角三角函數(shù)(sinA,cosA,tanA),知道30°,45°,60°角的三角函數(shù)值。
9、會由已知三角函數(shù)值求它對應的銳角。
10、能用銳角三角函數(shù)解直角三角形,能用相關(guān)知識解決一些簡單的實際問題。
(十二).圖形的投影
1.通過豐富的實例,了解中心投影和平行投影的概念。
2.會畫直棱柱、圓柱、圓錐、球的主視圖、左視圖、俯視圖,能判斷簡單物體的視圖,并會根據(jù)視圖描述簡單的幾何體。
3.了解直棱柱、圓錐的側(cè)面展開圖,能根據(jù)展開圖想象和制作實物模型。
4.通過實例,了解上述視圖與展開圖在現(xiàn)實生活中的應用。
(十三).坐標與圖形位置
1.結(jié)合實例進一步體會用有序數(shù)對可以表示物體的位置。
2.理解平面直角坐標系的有關(guān)概念,能畫出直角坐標系;在給定的直角坐標系中,能根據(jù)坐標描出點的位置、由點的位置寫出它的坐標。
3.在實際問題中,能建立適當?shù)闹苯亲鴺讼,描述物體的位置。
4.對給定的正方形,會選擇合適的直角坐標系,寫出它的頂點坐標,體會可以用坐標刻畫一個簡單圖形。
5.在平面上,能用方位角和距離刻畫兩個物體的相對位置。
(十四).坐標與圖形運動
1. 在直角坐標系中,以坐標軸為對稱軸,能寫出一個已知頂點坐標的多邊形的對稱圖形的頂點坐標,并知道對應頂點坐標之間的關(guān)系。
2. 在直角坐標系中,能寫出一個已知頂點坐標的多邊形沿坐標軸方向平移后圖形的頂點坐標,并知道對應頂點坐標之間的關(guān)系。
3. 在直角坐標系中,探索并了解將一個多邊形依次沿兩個坐標軸方向平移后所得到的圖形與原來的圖形具有平移關(guān)系,體會圖形頂點坐標的變化。
4. 在直角坐標系中,探索并了解將一個多邊形的頂點坐標(有一個頂點為原點、有一條邊在橫坐標軸上)分別擴大或縮小相同倍數(shù)時所對應的圖形與原圖形是位似的。
統(tǒng)計與概率
將考查學生體會抽樣的必要性以及用樣本估計總體的思想,描述數(shù)據(jù)的方法,概率的意義,能計算簡單事件發(fā)生的概率.
應注重考查學生所學內(nèi)容與日常生活、自然、社會和科學技術(shù)領域的聯(lián)系,使學生體會統(tǒng)計與概率對制定決策的重要作用;應注重使學生從事數(shù)據(jù)處理的全過程,根據(jù)統(tǒng)計結(jié)果作出合理的判斷;應注重使學生在具體情境中體會概率的意義;應加強考查統(tǒng)計與概率之間的聯(lián)系;應避免將這部分內(nèi)容的學習變成數(shù)字運算的練習,對有關(guān)術(shù)語不要求進行嚴格表述.
具體要求
(一)抽樣與數(shù)據(jù)分析
1.經(jīng)歷收集、整理、描述和分析數(shù)據(jù)的活動,了解數(shù)據(jù)處理的過程;能用計算器處理較為復雜的數(shù)據(jù).
2.體會抽樣的必要性,通過實例了解簡單隨機抽樣。
3.會制作扇形統(tǒng)計圖,能用統(tǒng)計圖直觀、有效地描述數(shù)據(jù)。
4.理解平均數(shù)的意義,能計算中位數(shù)、眾數(shù)、加權(quán)平均數(shù),了解它們是數(shù)據(jù)集中趨勢的描述。
5. 體會刻畫數(shù)據(jù)離散程度的意義,會計算簡單數(shù)據(jù)的方差。
6.通過實例,了解頻數(shù)和頻數(shù)分布的意義,能畫頻數(shù)分布直方圖,能利用頻數(shù)分布直方圖解釋數(shù)據(jù)中蘊含的信息。
7.體會樣本與總體的關(guān)系,知道可以通過樣本平均數(shù)、樣本方差推斷總體平均數(shù)和總體方差。
8.能解釋統(tǒng)計結(jié)果,根據(jù)結(jié)果作出簡單的判斷和預測,并能進行交流。
9.通過表格、折線圖、趨勢圖等,感受隨機現(xiàn)象的變化趨勢。
(二)事件的概率
1.能通過列表、畫樹狀圖等方法列出簡單隨機事件所有可能的結(jié)果,以及指定事件發(fā)生的所有可能結(jié)果,了解事件的概率。
2.知道通過大量的重復試驗,可以用頻率來估計概率。
四、試卷結(jié)構(gòu)、題型及分數(shù)分配
1.試題分選擇題、填空題和解答題三種類型,共26題。選擇題8道,為四選一的單項選擇題,每道題3分,共24分;填空題8道,只要求直接寫出結(jié)果,不必寫出計算過程或推理過程,每道題3分,共24分;解答題10道,包括計算題、作圖題、證明題、實際應用問題、閱讀理解問題、開放性及探索性問題等,共102分。解答題中除了以填空形式出現(xiàn)的問題只需直接填出答案外,其余的解答題需按要求寫出解答過程。
2.試卷滿分150分,考試時間120分鐘。
3.“數(shù)與代數(shù)”、“圖形與幾何”、“統(tǒng)計與概率”三大領域的分值比例約為4∶4∶2。
4.試題易、中、難比例約為7∶2∶1。
注:考生不允許帶計算器進入考場
關(guān)注"中華考試網(wǎng)"微信,第一時間獲取中考報名、考試、內(nèi)部資料信息!
中華考試網(wǎng)校友情提示:如果您在此過程中遇到任何疑問,請加入中華考試網(wǎng)官方微信號:examwcom@qq.com 或 學員咨詢微信號:w712931601,我們隨時與廣大考生朋友們一起交流!