函數(shù)的概念
如果集合A中的每一個元素,按照某種對應(yīng)關(guān)系,在集合B中都有唯一的對應(yīng)元素,那么這種對應(yīng)關(guān)系被稱為A到B的函數(shù)。例如Y=2X,Y=X^2都建立了{(lán)全體實數(shù)}到{全體實數(shù)}的函數(shù)關(guān)系,如果用f代表對應(yīng)關(guān)系,則函數(shù)表述為:f(x)=2x, f(x)=x^2。 如果A中的某些元素,不能對應(yīng)B中唯一的元素,則不存在函數(shù)關(guān)系。比如{所有小偷}與{所有失主},因為某些小偷偷過很多不同失主的東西。
函數(shù)的定義域和值域。MBA數(shù)學(xué)只考慮實數(shù)。所有能使函數(shù)有意義的實數(shù)的集合,構(gòu)成函數(shù)的定義域,即上面的集合A。F(X)=X^(1/2)定義域為{X/ X>=0},F(xiàn)(X)=1/X定義域為{X/ X<>=0},F(xiàn)(X)=LN(X)定義域為{X/ X>0}。如果函數(shù)中同時包括幾類簡單函數(shù),則定義域是各類函數(shù)定義域的交集。定義域按照對應(yīng)關(guān)系,能對應(yīng)的所有實數(shù)的集合,構(gòu)成函數(shù)的值域。定義域、對應(yīng)關(guān)系、值域,三者構(gòu)成一個函數(shù)。
定義域中的每一個元素,與其在值域中對應(yīng)的元素,組成一個數(shù)對,由二維坐標(biāo)系中的一個點來表示。所有這樣的點形成了函數(shù)的圖象。圖象能直觀地表現(xiàn)函數(shù)的對應(yīng)關(guān)系,大家應(yīng)該熟悉冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的基本圖象。要求高的同學(xué)可以進(jìn)一步掌握圖象的平移、反射、旋轉(zhuǎn)。
奇函數(shù)和偶函數(shù)的定義不說了,要注意的是奇函數(shù)和偶函數(shù)的定義域必須關(guān)于原點對稱。F(X)=X,X為任意實數(shù) 是奇函數(shù),如果限定X屬于[-3,5],那函數(shù)就不是奇函數(shù)了。
反函數(shù)。如果集合A中的每一個元素,按照某種對應(yīng)關(guān)系,在集合B中都有唯一的對應(yīng)元素;而B中的每一個元素,在A中都有唯一的元素與之對應(yīng)。則A到B的對應(yīng)關(guān)系是可逆的,A到B的對應(yīng)關(guān)系是原函數(shù),B到A的對應(yīng)關(guān)系是反函數(shù)。對于連續(xù)的函數(shù)來說,只有絕對增函數(shù)或絕對減函數(shù),才存在反函數(shù),否則A中必有兩個元素,在B中對應(yīng)同一元素。對于不連續(xù)的函數(shù)則沒有上述限制。
復(fù)合函數(shù)。集合A中的元素,按一種函數(shù)對應(yīng)到集合B,B中的相應(yīng)元素,再按另一種函數(shù)對應(yīng)到集合C,最后形成集合A到集合C的對應(yīng)關(guān)系,稱為復(fù)合函數(shù)。