4.(2015·合肥質(zhì)檢)已知函數(shù)f(x)=x+x(1(x>0),以點(diǎn)(n,f(n))為切點(diǎn)作函數(shù)圖像的切線ln(n∈N*),直線x=n+1與函數(shù)y=f(x)圖像及切線ln分別相交于An,Bn,記an=|AnBn|。
(1)求切線ln的方程及數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{nan}的前n項(xiàng)和為Sn,求證:Sn<1。
解 (1)對f(x)=x+x(1(x>0)求導(dǎo),得f′(x)=1-x2(1,
則切線ln的方程為y-n(1=n2(1(x-n),
即y=n2(1x+n(2。
易知Ann+1(1,Bnn2(n-1,
由an=|AnBn|知an=n2(n-1=n2(n+1)(1。
(2)證明:∵nan=n(n+1)(1=n(1-n+1(1,
∴Sn=a1+2a2+…+nan=1-2(1+2(1-3(1+…+n(1-n+1(1=1-n+1(1<1。
5.已知等差數(shù)列{an}的公差為2,前n項(xiàng)和為Sn,且S1,S2,S4成等比數(shù)列。
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=(-1)n-1anan+1(4n,求數(shù)列{bn}的前n項(xiàng)和Tn。
解 (1)因?yàn)镾1=a1,S2=2a1+2(2×1×2=2a1+2,
S4=4a1+2(4×3×2=4a1+12,
由題意得(2a1+2)2=a1(4a1+12),
解得a1=1,所以an=2n-1。
(2)bn=(-1)n-1anan+1(4n=(-1)n-1(2n-1)(2n+1)(4n
=(-1)n-12n+1(1。
當(dāng)n為偶數(shù)時,
Tn=3(1-5(1+…+2n-3(1+2n-1(1-2n+1(1=1-2n+1(1=2n+1(2n。
當(dāng)n為奇數(shù)時,
Tn=3(1-5(1+…-2n-3(1+2n-1(1+2n+1(1=1+2n+1(1=2n+1(2n+2。
所以Tn=,n為偶數(shù)。(2n或Tn=2n+1(2n+1+(-1)n-1
6.(2015·杭州質(zhì)檢)已知數(shù)列{an}滿足a1=1,an+1=1-4an(1,其中n∈N*。
(1)設(shè)bn=2an-1(2,求證:數(shù)列{bn}是等差數(shù)列,并求出{an}的通項(xiàng)公式;
(2)設(shè)cn=n+1(4an,數(shù)列{cncn+2}的前n項(xiàng)和為Tn,是否存在正整數(shù)m,使得Tn解 (1)∵bn+1-bn=2an+1-1(2-2an-1(2
=-1(1-2an-1(2
=2an-1(4an-2an-1(2=2(常數(shù)),
∴數(shù)列{bn}是等差數(shù)列。
∵a1=1,∴b1=2,
因此bn=2+(n-1)×2=2n,
由bn=2an-1(2得an=2n(n+1。
(2)由cn=n+1(4an,an=2n(n+1得cn=n(2,
∴cncn+2=n(n+2)(4=2n+2(1,
∴Tn=21-3(1+2(1-4(1+3(1-5(1+…+n(1-n+2(1
=2n+2(1<3,
依題意要使Tn即4(m(m+1)≥3,
解得m≥3或m≤-4,又m為正整數(shù),所以m的最小值為3。