12.數(shù)列1,2,3,4,5,…的前n項(xiàng)之和等于________________.
答案 +[1-()n]
解析 由數(shù)列各項(xiàng)可知通項(xiàng)公式為an=n+,由分組求和公式結(jié)合等差數(shù)列、等比數(shù)列求和公式可知前n項(xiàng)和為Sn=+[1-()n].
13.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1=λSn+1(n∈N*,且λ≠-1),且a1,2a2,a3+3為等差數(shù)列{bn}的前三項(xiàng).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和.
解 (1)方法一 ∵an+1=λSn+1(n∈N*),
∴an=λSn-1+1(n≥2).
∴an+1-an=λan,即an+1=(λ+1)an (n≥2),λ+1≠0,
又a1=1,a2=λS1+1=λ+1,
∴數(shù)列{an}是以1為首項(xiàng),以λ+1為公比的等比數(shù)列,
∴a3=(λ+1)2,∴4(λ+1)=1+(λ+1)2+3,
整理得λ2-2λ+1=0,得λ=1.
∴an=2n-1,bn=1+3(n-1)=3n-2.
方法二 ∵a1=1,an+1=λSn+1(n∈N*),
∴a2=λS1+1=λ+1,
a3=λS2+1=λ(1+λ+1)+1=λ2+2λ+1.
∴4(λ+1)=1+λ2+2λ+1+3,
整理得λ2-2λ+1=0,得λ=1.
∴an+1=Sn+1 (n∈N*),
an=Sn-1+1(n≥2),
∴an+1-an=an,即an+1=2an (n≥2),又a1=1,a2=2,
∴數(shù)列{an}是以1為首項(xiàng),以2為公比的等比數(shù)列,
∴an=2n-1,bn=1+3(n-1)=3n-2.
(2)設(shè)數(shù)列{anbn}的前n項(xiàng)和為Tn,
anbn=(3n-2)·2n-1,
∴Tn=1·1+4·21+7·22+…+(3n-2)·2n-1.①
∴2Tn=1·21+4·22+7·23+…+(3n-5)·2n-1+(3n-2)·2n.②
①-②得,-Tn=1·1+3·21+3·22+…+3·2n-1-(3n-2)·2n=1+3·-(3n-2)·2n.
整理得Tn=(3n-5)·2n+5.
14.已知數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)和為Sn,且Sn= (n∈N*),
(1)求證:數(shù)列{an}是等差數(shù)列;
(2)設(shè)bn=,Tn=b1+b2+…+bn,若λ≤Tn對于任意n∈N*恒成立,求實(shí)數(shù)λ的取值范圍.
(1)證明 ∵Sn= (n∈N*),①
∴Sn-1= (n≥2).②
①-②得an= (n≥2),
整理得(an+an-1)(an-an-1)=(an+an-1),
∵數(shù)列{an}的各項(xiàng)均為正數(shù),∴an+an-1≠0,
∴an-an-1=1(n≥2).
當(dāng)n=1時,a1=1,
∴數(shù)列{an}是首項(xiàng)為1,公差為1的等差數(shù)列.
(2)解 由(1)得Sn=,
∴bn===2(-),
∴Tn=2[(1-)+(-)+(-)+…+(-)]=2(1-)=,
∵Tn=,∴Tn單調(diào)遞增,∴Tn≥T1=1,∴λ≤1.故λ的取值范圍為(-∞,1].