亚洲欧洲国产欧美一区精品,激情五月亚洲色五月,最新精品国偷自产在线婷婷,欧美婷婷丁香五月天社区

      單獨(dú)報(bào)考
      當(dāng)前位置:中華考試網(wǎng) >> 高考 >> 江蘇高考 >> 江蘇高考數(shù)學(xué)模擬題 >> 2017年江蘇高考數(shù)學(xué)基礎(chǔ)第一輪基礎(chǔ)訓(xùn)練7

      2017年江蘇高考數(shù)學(xué)第一輪基礎(chǔ)訓(xùn)練復(fù)習(xí)(七)

      中華考試網(wǎng)  2016-11-05  【

      1已知公差不為零的等差數(shù)列{an}的前n項(xiàng)和為Sn,a10S4a9(S8)等于(  )

       

       

      A4     B5     C8      D10

      2已知正項(xiàng)數(shù)列{an},a11,a22,2an(2)an+1(2)an-1(2)(n2)a6等于(  )

       

       

      A16  B8  C2  D4

      3已知數(shù)列{an}是等差數(shù)列,a1tan 225°,a513a1,設(shè)Sn為數(shù)列{(1)nan}的前n項(xiàng)和,S2 014(  )

       

      A2 015  B2 015  C3 021  D3 022

      4設(shè){an}是公差不為零的等差數(shù)列a22,a1a3,a9成等比數(shù)列,則數(shù)列{an}的前n項(xiàng)和Sn(  )

       

      A.4(n2)4(7n)  B.2(n2)2(3n)

       

      C.4(n2)4(3n)  D.2(n2)2(n)

      5.已知數(shù)列{an}是等差數(shù)列,a1[01],a2[1,2]a3[2,3]a4的取值范圍為(  )

       

      A[3,4]  B.3(13)

      C.2(9)  D.[2,5]

      6在數(shù)列{an},已知a1=-20,an1an4(nN*)

       

      (1)求數(shù)列{an}的通項(xiàng)公式和前n項(xiàng)和An

       

      (2)bnAn+24n(2)(nN*),求數(shù)列{bn}的前n項(xiàng)Sn.

       

       

      7(2015·河北衡水模擬)已知等差數(shù)列{an },a2a66, Sn 為其前

       

      (1)求數(shù)列{an }的通項(xiàng)公式;

      參考答案

      1A [a10S4a19d4a12(4×3)d4a16d,a1d0.所以S88a12(8×7)d8a128d36d,所以a9(S8)a1+8d(36d)9d(36d)4,A.]

       

       

      2D [2an(2)an+1(2)an-1(2)(n2)可知數(shù)列{an(2)}是等差數(shù)列,且以a1(2)1為首項(xiàng),公差da2(2)a1(2)413,所以數(shù)列的通項(xiàng)公式為an(2)13(n1)3n2所以a6(2)3×6216,a64.D.]

       

       

      3C [a1tan 225°tan 45°1

       

      設(shè)等差數(shù)列{an}的公差為d,則由a513a1a513,

       

      d5-1(a5-a1)4(13-1)3,

       

      S2 014=-a1a2a3a4(1)2 014a2 014=-(a1a3a2 013)(a2a4a2 014)1 007d1 007×33 021.故選C.]

      4D [設(shè)等差數(shù)列{an}的公差為d(d0),

       

      a22a1,a3a9成等比數(shù)列,(2d)2(2d)(27d)解得d1.a1a2d211,Snna12(n(n-1)d)n2(n(n-1))2(n)

       

      2(n),故選D.]

      5C

      6解 (1)數(shù)列{an}滿足an1an4(nN*),數(shù)列{an}是以公差為4,a1=-20為首項(xiàng)的等差數(shù)列.故數(shù)列{an}的通項(xiàng)公式為an

       

      204(n1)4n24(nN*)數(shù)列{an}的前n項(xiàng)和An2n222n(nN*)

      (2)bnAn+24n(2)n(n+1)(1)n(1)n+1(1)(nN*), 數(shù)列{bn}的前n項(xiàng)SnSnb1b2bn2(1)3(1)n+1(1)1n+1(1)n+1(n).]

       

      7解 (1)a2a66,a43,又由S52(5(a1+a5))5a33(35),a33(7)設(shè)等差數(shù)列{an}的公差為d,a1+3d=3.(,)解得3(2)

       

      an3(2)n3(1).

       

      (2)當(dāng)n2bnanan-1(1)3(1)

       

       

      2(9)2n+1(1) 當(dāng)n1,上式同樣成立,

       

      Snb1b2bn

       

      2(9)2n+1(1)2(9)2n+1(1)

       

      2(9)2n+1(1)n遞增,2(9)2n+1(1)2(9)·1m

       

      m5,mmin5.

      123
      糾錯評論責(zé)編:jiaojiao95
      相關(guān)推薦
      熱點(diǎn)推薦»