1.已知公差不為零的等差數(shù)列{an}的前n項(xiàng)和為Sn,若a10=S4,則a9等于( )
A.4 B.5 C.8 D.10
2.已知正項(xiàng)數(shù)列{an}中,a1=1,a2=2,2an=an+1+an-1(n≥2),則a6等于( )
A.16 B.8 C.2 D.4
3.已知數(shù)列{an}是等差數(shù)列,a1=tan 225°,a5=13a1,設(shè)Sn為數(shù)列{(-1)nan}的前n項(xiàng)和,則S2 014=( )
A.2 015 B.-2 015 C.3 021 D.-3 022
4.設(shè){an}是公差不為零的等差數(shù)列,a2=2,且a1,a3,a9成等比數(shù)列,則數(shù)列{an}的前n項(xiàng)和Sn=( )
A.4+4 B.2+2
C.4+4 D.2+2
5.已知數(shù)列{an}是等差數(shù)列,且a1∈[0,1],a2∈[1,2],a3∈[2,3],則a4的取值范圍為( )
A.[3,4] B.3
C.2 D.[2,5]
6.在數(shù)列{an}中,已知a1=-20,an+1=an+4(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式和前n項(xiàng)和An;
(2)若bn=An+24n(n∈N*),求數(shù)列{bn}的前n項(xiàng)Sn.
7.(2015·河北衡水模擬)已知等差數(shù)列{an }中,a2+a6=6, Sn 為其前
(1)求數(shù)列{an }的通項(xiàng)公式;
參考答案
1.A [由a10=S4得a1+9d=4a1+2d=4a1+6d,即a1=d≠0.所以S8=8a1+2d=8a1+28d=36d,所以a9=a1+8d=9d=4,選A.]
2.D [由2an=an+1+an-1(n≥2)可知數(shù)列{an}是等差數(shù)列,且以a1=1為首項(xiàng),公差d=a2-a1=4-1=3,所以數(shù)列的通項(xiàng)公式為an=1+3(n-1)=3n-2,所以a6=3×6-2=16,即a6=4.選D.]
3.C [a1=tan 225°=tan 45°=1,
設(shè)等差數(shù)列{an}的公差為d,則由a5=13a1,得a5=13,
d=5-1=4=3,
∴S2 014=-a1+a2-a3+a4+…+(-1)2 014a2 014=-(a1+a3+…+a2 013)+(a2+a4+…+a2 014)=1 007d=1 007×3=3 021.故選C.]
4.D [設(shè)等差數(shù)列{an}的公差為d(d≠0),
由a2=2,且a1,a3,a9成等比數(shù)列,得(2+d)2=(2-d)(2+7d),解得d=1.∴a1=a2-d=2-1=1,∴Sn=na1+2=n+2=2
+2,故選D.]
5.C
6.解 (1)∵數(shù)列{an}滿足an+1=an+4(n∈N*),∴數(shù)列{an}是以公差為4,以a1=-20為首項(xiàng)的等差數(shù)列.故數(shù)列{an}的通項(xiàng)公式為an=
-20+4(n-1)=4n-24(n∈N*),數(shù)列{an}的前n項(xiàng)和An=2n2-22n(n∈N*).
(2)∵bn=An+24n=n(n+1)=n-n+1(n∈N*), ∴數(shù)列{bn}的前n項(xiàng)Sn為Sn=b1+b2+…+bn=2+3+…+n+1=1-n+1=n+1.]
7.解 (1)由a2+a6=6,得a4=3,又由S5=2=5a3=3,得a3=3,設(shè)等差數(shù)列{an}的公差為d,則a1+3d=3.解得3
∴an=3n+3.
(2)當(dāng)n≥2時,bn=anan-1=3=
22n+1 當(dāng)n=1時,上式同樣成立,
∴Sn=b1+b2+…+bn
=22n+1=22n+1
又22n+1隨n遞增,且22n+1<2·1≤m,
∴m≥5,mmin=5.