一、填空題
1.把1,3,6,10,15,21,…這些數(shù)叫做三角形數(shù),這是因?yàn)橐赃@些數(shù)目的點(diǎn)可以排成一個(gè)正三角形(如圖).
則第7個(gè)三角形數(shù)是________.
[解析] 由題圖可知,第7個(gè)三角形數(shù)是1+2+3+4+5+6+7=28.
[答案] 28
2.已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn+Sm=Sn+m,且a1=1,那么a10=________.
[解析] a10=S10-S9=(S9+S1)-S9=S1=a1=1.
[答案] 1
3.(2014·蘇州中學(xué)檢測(cè))已知數(shù)列{an}中,anN*,對(duì)于任意nN*,an≤an+1,若對(duì)于任意正整數(shù)k,在數(shù)列中恰有k個(gè)k出現(xiàn),求a50=________.
[解析] 從定義可知數(shù)列{an}不是遞減數(shù)列,小的數(shù)一定在前面,故數(shù)列各項(xiàng)依次為1個(gè)1,2個(gè)2,3個(gè)3,4個(gè)4,…,k個(gè)k,由于1+2+3+…+9=45,說(shuō)明a45=9,a46=10,又1+2+3+…+9+10=55,故a50=10.
[答案] 10
4.(2014·南京模擬)已知數(shù)列{an}中,an=n2+λn(λ是與n無(wú)關(guān)的實(shí)數(shù)常數(shù)),且滿足a1-3.
[答案] (-3,+∞)
5.已知a1=1,an=n(an+1-an)(nN*),則數(shù)列{an}的通項(xiàng)公式an=________.
[解析] an=n(an+1-an),=,
an=×××…×××a1
=×××…×××1=n.
[答案] n
6.已知a1=2,an+1-an=2n+1(nN*),則an=________.
[解析] 由an+1-an=2n+1得an-an-1=2n-1,an-1-an-2=2n-3,…,a3-a2=5,a2-a1=3,
則an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+(a2-a1)+a1
=2+3+5+7+…+(2n-3)+(2n-1)
=2+=n2+1.
[答案] n2+1
7.(2014·廣州模擬)已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2an-2,則a2等于________.
[解析] Sn=2an-2,a1=S1=2a1-2,a1=2,
S2=2a2-2=a1+a2,即a2=a1+2=4.
[答案] 4
8.數(shù)列{an}中,a1=1,對(duì)于所有的n≥2,nN*,都有a1·a2·a3·…·an=n2,則a3+a5=________.
[解析] 由題意知:a1·a2·a3…an-1=(n-1)2,
an=2(n≥2),
a3+a5=2+2=.
[答案]
二、解答題
9.數(shù)列{an}的通項(xiàng)公式是an=n2-7n+6(nN*).
(1)這個(gè)數(shù)列的第4項(xiàng)是多少?
(2)150是不是這個(gè)數(shù)列的項(xiàng)?若是這個(gè)數(shù)列的項(xiàng),它是第幾項(xiàng)?
(3)該數(shù)列從第幾項(xiàng)開始各項(xiàng)都是正數(shù)?
[解] (1)當(dāng)n=4時(shí),a4=42-4×7+6=-6.
(2)令an=150,即n2-7n+6=150,
解得n=16或n=-9(舍去),
即150是這個(gè)數(shù)列的第16項(xiàng).
(3)令an=n2-7n+6>0,解得n>6或n<1(舍).
n∈N*,數(shù)列從第7項(xiàng)起各項(xiàng)都是正數(shù).
10.(1)已知數(shù)列{an}滿足:a1=1,an=an-1+3n-1(n≥2,nN*),求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè){an}是首項(xiàng)為1的正數(shù)數(shù)列,且(n+1)a-na+an+1an=0(n=1,2,3,…),求其通項(xiàng)公式an.
[解] (1)a1=1,an-an-1=3n-1,
an=a1+(a2-a1)+(a3-a2)+…+(an-1-an-2)+(an-an-1)=1+3+32+…+3n-1==.即an=.
(2)由已知遞推關(guān)系式分解因式可得:
(an+1+an)[(n+1)an+1-nan]=0.
又an>0,an+1+an≠0,
(n+1)an+1-nan=0,=,
an=a1···…·
=1····…··=.
即an=.
[B級(jí) 能力提升練]
一、填空題
1.已知數(shù)列{an}對(duì)于任意p,qN*,有ap+aq=ap+q,若a1=,則a36=________.
[解析] ap+q=ap+aq,
a36=a32+a4=2a16+a4=4a8+a4
=8a4+a4=18a2=36a1=4.
[答案] 4
2.(2014·揚(yáng)州中學(xué)檢測(cè))設(shè)f1(x)=,fn+1(x)=f1[fn(x)],且an=,則a2 014=________.
[解析] f1(0)=2,f2(0)==,f3(0)=,f4(0)=,…,
a1==,a2=-,a3=,a4=-,…,
可猜測(cè)a2 014=2 015.
實(shí)際上,an+1====-an,
即數(shù)列{an}是公比為-的等比數(shù)列,a2 014=×2 013=2 015.
[答案] 2 015
二、解答題
3.已知數(shù)列{an}中,a1=1,前n項(xiàng)和Sn=an.
(1)求a2,a3;
(2)求數(shù)列{an}的通項(xiàng)公式.
[解] (1)Sn=an,且a1=1,
S2=a2,即a1+a2=a2,得a2=3.
由S3=a3,得3(a1+a2+a3)=5a3,得a3=6.
(2)由題設(shè)知a1=1.
當(dāng)n≥2時(shí),有an=Sn-Sn-1=an-an-1,
整理得an=an-1,即=,
于是=3,=,=,…,=,
以上n-1個(gè)式子的兩端分別相乘,得=,
an=,n≥2.
又a1=1適合上式,
故an=,nN*.