一、非標(biāo)準(zhǔn)
1.A 解析:拋物線y2=4x的焦點為(1,0),則在雙曲線中a=1.又2c=4,c=2,e==2.
2.C 解析:設(shè)F1,F2為焦點,由題意知,點M的軌跡是以F1F2為直徑的圓,
則c1或k<-1.
9.解:設(shè)雙曲線的方程為=1(a>0,b>0),
則a2+b2=()2=7.
由
消去y,得=1.
整理,得(b2-a2)x2+2a2x-a2-a2b2=0.(*)
由直線y=x-1與雙曲線有兩個交點知a≠b,
設(shè)M(x1,y1),N(x2,y2),
則x1和x2為方程(*)的根,
于是x1+x2=.
由已知得=-,
則=-,即5a2=2b2.
由得
故所求雙曲線方程為=1.
10.解:(1)由|AF1|=3|F1B|,|AB|=4,
得|AF1|=3,|F1B|=1.
因為ABF2的周長為16,
所以由橢圓定義可得4a=16,
|AF1|+|AF2|=2a=8.
故|AF2|=2a-|AF1|=8-3=5.
(2)設(shè)|F1B|=k,則k>0,
且|AF1|=3k,|AB|=4k.
由橢圓定義可得|AF2|=2a-3k,|BF2|=2a-k.
在ABF2中,由余弦定理可得|AB|2=|AF2|2+|BF2|2-2|AF2|·|BF2|cosAF2B,
即(4k)2=(2a-3k)2+(2a-k)2-(2a-3k)·(2a-k),
化簡可得(a+k)(a-3k)=0,
而a+k>0,故a=3k.
于是有|AF2|=3k=|AF1|,|BF2|=5k.
因此|BF2|2=|F2A|2+|AB|2,可得F1AF2A,
故AF1F2為等腰直角三角形.
從而c=a,所以橢圓E的離心率e=.
11.B 解析:將x=-c代入雙曲線方程得A.
由ABE是直角三角形,得=a+c,
即a2+ac=b2=c2-a2,
整理得c2-ac-2a2=0.
∴e2-e-2=0,
解得e=2(e=-1舍去).
12.A 解析:可解方程t2cosθ+tsinθ=0,
得兩根0,-.
不妨設(shè)a=0,b=-,
則A(0,0),B,
可求得直線方程y=-x,
因為雙曲線漸近線方程為y=±x,
故過A,B的直線即為雙曲線的一條漸近線,直線與雙曲線無交點,故選A.
13.D 解析:因為橢圓的離心率為,
所以e=,c2=a2,a2=a2-b2.
所以b2=a2,即a2=4b2.
因為雙曲線的漸近線為y=±x,代入橢圓得=1
即=1,
所以x2=b2,x=±b,y2=b2,y=±b.
則在第一象限的交點坐標(biāo)為.
所以四邊形的面積為4×b×b=b2=16.解得b2=5,
故橢圓方程為=1.
14.(1)證明:依題意可設(shè)AB方程為y=kx+2,代入x2=4y,得x2=4(kx+2),即x2-4kx-8=0.
設(shè)A(x1,y1),B(x2,y2),
則有x1x2=-8,
直線AO的方程為y=x;BD的方程為x=x2.
解得交點D的坐標(biāo)為
注意到x1x2=-8及=4y1,
則有y==-2.
因此D點在定直線y=-2上(x≠0).
(2)解:依題設(shè),切線l的斜率存在且不等于0,設(shè)切線l的方程為y=ax+b(a≠0),
代入x2=4y得x2=4(ax+b),
即x2-4ax-4b=0,
由Δ=0得(4a)2+16b=0,化簡整理得b=-a2.
故切線l的方程可寫為y=ax-a2.
分別令y=2,y=-2得N1,N2的坐標(biāo)為N1,N2.
則|MN2|2-|MN1|2=+42-=8,
即|MN2|2-|MN1|2為定值8.
15.解:(1)設(shè)F(c,0),由條件知,,得c=.
又,所以a=2,b2=a2-c2=1.
故E的方程為+y2=1
(2)當(dāng)lx軸時不合題意,故設(shè)l:y=kx-2,P(x1,y1),Q(x2,y2).
將y=kx-2代入+y2=1,
得(1+4k2)x2-16kx+12=0.
當(dāng)Δ=16(4k2-3)>0,即k2>時,x1,2=.
從而|PQ|=|x1-x2|
=.
又點O到直線PQ的距離d=,
所以O(shè)PQ的面積SOPQ=d·|PQ|=.
設(shè)=t,則t>0,
SOPQ=.
因為t+≥4,當(dāng)且僅當(dāng)t=2,即k=±時等號成立,且滿足Δ>0.
所以,當(dāng)OPQ的面積最大時,l的方程為y=x-2或y=-x-2.