亚洲欧洲国产欧美一区精品,激情五月亚洲色五月,最新精品国偷自产在线婷婷,欧美婷婷丁香五月天社区

      單獨(dú)報(bào)考
      當(dāng)前位置:中華考試網(wǎng) >> 高考 >> 湖南高考 >> 湖南高考數(shù)學(xué)模擬題 >> 2015高考數(shù)學(xué)一輪復(fù)習(xí)同步檢測(cè):《全稱量詞與存在量詞》

      2015高考數(shù)學(xué)一輪復(fù)習(xí)同步檢測(cè):《全稱量詞與存在量詞》

      中華考試網(wǎng)  2015-01-07  【

        一、選擇題. 已知命題p:存在nN,2n>1 000,則非p為(  )

        A.任意nN,2n≤1 000 B.任意nN,2n>1 000

        C.存在nN,2n≤1 000 D.存在nN,2n<1 000

        解析特稱命題的否定是全稱命題,即p:存在xM,p(x),則p:任意xM,非p(x).

        答案A

        2. ax2+2x+1=0至少有一個(gè)負(fù)的實(shí)根的充要條件是(  ).

        A.0

        C.a≤1 D.0

        解析 (篩選法)當(dāng)a=0時(shí),原方程有一個(gè)負(fù)的實(shí)根,可以排除A、D;當(dāng)a=1時(shí),原方程有兩個(gè)相等的負(fù)實(shí)根,可以排除B,故選C.

        答案 C3.下列命題中的真命題是(  ).

        A.x∈R,使得sin x+cos x=

        B.x∈(0,+∞),ex>x+1

        C.x∈(-∞,0),2x<3x

        D.x∈(0,π),sin x>cos x

        解析 因?yàn)閟in x+cos x=sin≤<,故A錯(cuò)誤;當(dāng)x<0時(shí),y=2x的圖象在y=3x的圖象上方,故C錯(cuò)誤;因?yàn)閤時(shí)有sin x0,解得b<0或b>.

        答案 (-∞,0)

        9.若“∀x∈R,(a-2)x+1>0”是真命題,則實(shí)數(shù)a的取值集合是________.解析“∀x∈R,(a-2)x+1>0”是真命題,等價(jià)于(a-2)x+1>0的解集為R,所以a-2=0,所以a=2.

        答案{2}

        10.已知命題p:“∃x∈R且x>0,x>”,命題p的否定為命題q,則q是“____________”;q的真假為________.(選填“真”或“假”)

        答案∀x∈R+,x≤ 假

        .命題“∃x0∈R,2x-3ax0+9<0”為假命題,則實(shí)數(shù)a的取值范圍為________.

        解析題目中的命題為假命題,

        則它的否定“∀x∈R,2x2-3ax+9≥0”為真命題,

        也就是常見的“恒成立”問(wèn)題,

        只需Δ=9a2-4×2×9≤0,即可解得-2≤a≤2.

        答案[-2,2]

        .令p(x):ax2+2x+a>0,若對(duì)任意xR,p(x)是真命題,則實(shí)數(shù)a的取值范圍是________.

        解析 對(duì)任意xR,p(x)是真命題.

        對(duì)任意xR,ax2+2x+a>0恒成立,

        當(dāng)a=0時(shí),不等式為2x>0不恒成立,

        當(dāng)a≠0時(shí),若不等式恒成立,

        則a>1.

        答案 a>1

        .若命題“x∈R,ax2-ax-2≤0”是真命題,則實(shí)數(shù)a的取值范圍是________.

        解析 當(dāng)a=0時(shí),不等式顯然成立;當(dāng)a≠0時(shí),由題意知得-8≤a<0.綜上,-8≤a≤0.

        答案 [-8,0]三、解答題. 寫出下列命題的否定,并判斷真假.

        (1)q: x∈R,x不是5x-12=0的根;

        (2)r:有些素?cái)?shù)是奇數(shù);

        (3)s: x0∈R,|x0|>0.

        解(1)q: x0∈R,x0是5x-12=0的根,真命題.

        (2)r:每一個(gè)素?cái)?shù)都不是奇數(shù),假命題.

        (3)s:x∈R,|x|≤0,假命題..已知c>0,設(shè)命題p:函數(shù)y=cx為減函數(shù).命題q:當(dāng)x時(shí),函數(shù)f(x)=x+>恒成立.如果“p或q”為真命題,“p且q”為假命題,求c的取值范圍.

        解 由命題p為真知,0,

        若“p或q”為真命題,“p且q”為假命題,

        則p、q中必有一真一假,

        當(dāng)p真q假時(shí),c的取值范圍是0

      糾錯(cuò)評(píng)論責(zé)編:xiejinyan
      相關(guān)推薦
      熱點(diǎn)推薦»