解答題
1.設(shè)二次函數(shù)f(x)=ax2+bx+c,函數(shù)F(x)=f(x)-x的兩個(gè)零點(diǎn)為m,n(m0的解集;
(2)若a>0,且a≠0,即a(x+1)(x-2)>0.
當(dāng)a>0時(shí),不等式F(x)>0的解集為{x|x<-1或x>2};當(dāng)a<0時(shí),不等式F(x)>0的解集為{x|-10,且00.
f(x)-m<0,即f(x)4的解集為{x|x<1或x>b},
(1)求a,b;
(2)解不等式ax2-(ac+b)x+bc<0.
解 (1)因?yàn)椴坏仁絘x2-3x+6>4的解集為{x|x<1或x>b},所以x1=1與x2=b是方程ax2-3x+2=0的兩個(gè)實(shí)數(shù)根,且b>1.
由根與系數(shù)的關(guān)系,得解得
(2)由(1)知不等式ax2-(ac+b)x+bc<0為x2-(2+c)x+2c<0,即(x-2)(x-c)<0.
當(dāng)c>2時(shí),不等式(x-2)(x-c)<0的解集為{x|22時(shí),不等式的解集為{x|20,
即Δ=(m-2)2-4(m-1)(-1)>0,得m2>0,
所以m≠1且m≠0.
(2)在m≠0且m≠1的條件下,
因?yàn)?==m-2,
所以+=2-
=(m-2)2+2(m-1)≤2.
得m2-2m≤0,所以0≤m≤2.
所以m的取值范圍是{m|0