9.(2016·云南師大附中月考)若函數(shù)f(x)=-x3+x2+2ax在上存在單調(diào)遞增區(qū)間,則a的取值范圍是__________.
解析:f ′(x)=-x2+x+2a=-2++2a.當(dāng)x∈時(shí),f′(x)的最大值為
f ′=2a+,
令2a+>0,解得a>-,所以a的取值范圍是.
答案:
10.(2016·河南信陽(yáng)一模)已知實(shí)數(shù)a,b滿足eb=2a-3,則|2a-b-1|的最小值為__________.
解析:由eb=2a-3,取對(duì)數(shù),得b=ln(2a-3),則2a-3>0.
則|2a-b-1|=|2a-ln(2a-3)-1|=|(2a-3)-ln(2a-3)+2|(*),
令2a-3=x(x>0),(*)式化為|x-lnx+2|,
令y=x-lnx+2,則y′=1-,令y′=0,得x=1.
當(dāng)x∈(0,1)時(shí),y′<0,則函數(shù)在(0,1)上為減函數(shù);
當(dāng)x∈(1,+∞)時(shí),y′>0,則函數(shù)在(1,+∞)上為增函數(shù),
∴當(dāng)x=1時(shí),ymin=1-ln1+2=3,即|2a-b-3|的最小值為3.
答案:3
三、解答題
11.(2016·江西高安二中段考)已知函數(shù)f(x)=(x-1)ln(x-1).
(1)設(shè)函數(shù)g(x)=-a(x-1)+f(x)在區(qū)間[2,e2+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(2)若kZ,且f(x+1)+x-k(x-1)>0對(duì)x>1恒成立,求k的最大值.
解:(1)g(x)=-a(x-1)+(x-1)ln(x-1),則g′(x)=-a+1+ln(x-1)在(1,+∞)上遞增;又g(x)在[2,e2+1]上不單調(diào),等于g′(x)在[2,e2+1]上有零點(diǎn).由已知,有解得11恒成立.令u(x)=,則u′(x)=,令v(x)=-lnx+x-2,v′(x)=1-=.x>1,
v′(x)>0,即v(x)在(1,+∞)上單調(diào)遞增.又v(3)=-ln3+1<0,v(4)=-2ln2+2>0,
x0∈(3,4),使得v(x0)=0,即u′(x0)=0,u(x)在(1,x0)上單調(diào)遞減,在(x0,+∞)上單調(diào)遞增.[u(x)]min=u(x0)===x0(3,4),k<[u(x)]min=x0,又kZ,k的最大值為3.
12.(2016·湖南株洲統(tǒng)一測(cè))設(shè)函數(shù)f(x)=alnx+b(x2-3x+2),其中a,bR.
(1)若a=b,討論f(x)極值(用a表示);
(2)當(dāng)a=1,b=-,函數(shù)g(x)=2f(x)-(λ+3)x+2,若x1,x2(x1≠x2)滿足g(x1)=g(x2)且x1+x2=2x0,證明:g′(x0)≠0.
解:(1)函數(shù)f(x)的定義域?yàn)?0,+∞),a=b,f(x)=alnx+a(x2-3x+2),f ′(x)=+a(2x-3)=.a=0時(shí),f(x)=0,所以函數(shù)f(x)無極值;當(dāng)a>0時(shí),f(x)在和(1,+∞)上單調(diào)遞增,在上單調(diào)遞減,
f(x)的極大值為f=-aln2+a,f(x)的極小值為f(1)=0;
當(dāng)a<0時(shí),f(x)在和(1,+∞)上單調(diào)遞減,在上單調(diào)遞增,f(x)的極小值為f=-aln2+a,f(x)的極大值為f(1)=0.綜上所述:當(dāng)a=0時(shí),函數(shù)f(x)無極值;當(dāng)a>0時(shí),函數(shù)f(x)的極大值為-aln2+a,函數(shù)f(x)的極小值為0;當(dāng)a<0時(shí),函數(shù)f(x)的極小值為-aln2+a,函數(shù)f(x)的極大值為0.
(2)g(x)=2lnx-x2-λx,g′(x)=-2x-λ.假設(shè)結(jié)論不成立,則有
由,得2ln-(x-x)-λ(x1-x2)=0,
λ=2-2x0,由,得λ=-2x0,
=,即=,即ln=.令t=,不妨設(shè)x10,
u(t)在0