亚洲欧洲国产欧美一区精品,激情五月亚洲色五月,最新精品国偷自产在线婷婷,欧美婷婷丁香五月天社区

      單獨(dú)報(bào)考
      當(dāng)前位置:中華考試網(wǎng) >> 高考 >> 全國(guó)高考 >> 全國(guó)高考數(shù)學(xué)模擬題 >> 2017年高考數(shù)學(xué)提分專項(xiàng)練習(xí)(六)

      2017年高考數(shù)學(xué)提分專項(xiàng)練習(xí)(六)_第2頁(yè)

      中華考試網(wǎng)  2016-12-27  【

      三、解答題

      11.數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=(an-1),數(shù)列{bn}滿足bn=bn-1-(n≥2),且b1=3.

      (1)求數(shù)列{an}與{bn}的通項(xiàng)公式;

      (2)設(shè)數(shù)列{cn}滿足cn=an·log2(bn+1),其前n項(xiàng)和為Tn,求Tn.

      解析:(1)對(duì)于數(shù)列{an}有Sn=(an-1),

      Sn-1=(an-1-1)(n≥2),

      由-,得an=(an-an-1),即an=3an-1,

      當(dāng)n=1時(shí),S1=(a1-1)=a1,解得a1=3,

      則an=a1·qn-1=3·3n-1=3n.

      對(duì)于數(shù)列{bn},有bn=bn-1-(n≥2),

      可得bn+1=bn-1+,即=.

      bn+1=(b1+1)n-1=4n-1=42-n,

      即bn=42-n-1.

      (2)由(1)可知

      cn=an·log2(bn+1)=3n·log2 42-n

      =3n·log2 24-2n=3n(4-2n).

      Tn=2·31+0·32+(-2)·33+…+(4-2n)·3n,

      3Tn=2·32+0·33+…+(6-2n)·3n+(4-2n)·3n+1,

      由-,得

      -2Tn=2·3+(-2)·32+(-2)·33+…+(-2)·3n-(4-2n)·3n+1

      =6+(-2)(32+33+…+3n)-(4-2n)·3n+1,

      則Tn=-3++(2-n)·3n+1

      =-+·3n+1.

      12.已知數(shù)列{an}為等比數(shù)列,其前n項(xiàng)和為Sn,已知a1+a4=-,且對(duì)于任意的nN+有Sn,Sn+2,Sn+1成等差數(shù)列.

      (1)求數(shù)列{an}的通項(xiàng)公式;

      (2)已知bn=n(nN+),記Tn=+++…+,若(n-1)2≤m(Tn-n-1)對(duì)于n≥2恒成立,求實(shí)數(shù)m的范圍.

      解析:(1)設(shè)公比為q,

      S1,S3,S2成等差數(shù)列,

      2S3=S1+S2,

      2a1(1+q+q2)=a1(2+q),得q=-,

      又a1+a4=a1(1+q3)=-,

      a1=-, an=a1qn-1=n.

      (2)∵ bn=n,an=n,

      =n·2n,

      Tn=1·2+2·22+3·23+…+n·2n,

      2Tn=1·22+2·23+3·24+…+(n-1)·2n+n·2n+1,

      ①-,得-Tn=2+22+23+…+2n-n·2n+1,

      Tn=-=(n-1)·2n+1+2.

      若(n-1)2≤m(Tn-n-1)對(duì)于n≥2恒成立,

      則(n-1)2≤m[(n-1)·2n+1+2-n-1],

      (n-1)2≤m(n-1)·(2n+1-1),

      m≥.

      令f(n)=,f(n+1)-f(n)=-=<0,

      f(n)為減函數(shù),

      f(n)≤f(2)=.

      m≥.即m的取值范圍是.

      13.數(shù)列{an}是公比為的等比數(shù)列,且1-a2是a1與1+a3的等比中項(xiàng),前n項(xiàng)和為Sn;數(shù)列{bn}是等差數(shù)列,b1=8,其前n項(xiàng)和Tn滿足Tn=nλ·bn+1(λ為常數(shù),且λ≠1).

      (1)求數(shù)列{an}的通項(xiàng)公式及λ的值;

      (2)比較+++…+與Sn的大小.

      解析:(1)由題意得(1-a2)2=a1(a3+1),

      即2=a1,

      解得a1=, an=n.

      又即

      解得或(舍).λ=.

      (2)由(1)知Sn=1-n,

      Sn=-n+1≥,

      又Tn=4n2+4n,

      ==,

      ++…+

      =1-+-+…+-

      =<.

      由可知,++…+

      12
      糾錯(cuò)評(píng)論責(zé)編:jiaojiao95
      相關(guān)推薦
      熱點(diǎn)推薦»